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Abstract

Entomology has had many applications in many biological domains (i.e insect

counting as a biodiversity index). To meet a growing biological demand and

to compensate a decreasing workforce amount, automated entomology has been

around for decades. This challenge has been tackled by computer scientists as

well as by biologists themselves. This survey investigates fourty-four studies

on this topic and tries to give a global picture on what are the scientific locks

and how the problem was addressed. Views are adopted on image capture,

feature extraction, classification methods and the tested datasets. A general

discussion is finally given on the questions that might still remain unsolved such

as: the image capture conditions mandatory to good recognition performance,

the definition of the problem and whether computer scientist should consider

it as a problem in its own or just as an instance of a wider image recognition

problem.
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1. Introduction

Building accurate knowledge of the identity, the geographic distribution and

the evolution of living species is essential for a sustainable development of hu-

manity as well as for biodiversity conservation. Insects are a class of inverte-

brates within the arthropods that have a exoskeleton, a three-part body (head,

thorax and abdomen), three pairs of jointed legs, compound eyes and one pair

of antennae. This is a subclass of the Arthropods class which also includes

Arachnids, Myriapods and Crustacean and they have been the dominant com-

ponent of animal species diversity for all of the past 520 million years, since the

main burst of the Cambrian radiation. They have been considered to be the

earliest colonizers of land [1, 2]. Fossil remains demonstrate that Arthropod

species are robust over long periods of time, and that, given the opportunity,

they migrate with changing conditions rather than evolving new species [3].

Arthropods are of exceptional value in the reconstruction of paleoenvironments

because they are provide detailed, precise information on vegetation, soils, wa-

ter quality, vertebrate species composition, forest composition and degree of

stress [3]. Arthropods represent up to 80% of animal phylum [4] and make up

for the largest proportion of species richness at any spatial scale [5]. With 1,5

millions of species, they are more representative for wholesale organism bio-

diversity than any other group. Arthropods have been recognized as efficient

indicators of ecosystem function and recommended for use in conservation plan-

ning [6, 7, 8, 9]. Many researchers have assessed habitat quality and measured

habitat differences using Arthropods within different ecosystems as well as agri-

cultural, forest and urban landscapes [10, 11, 12, 13, 14]. More specifically,

arthropod diversity has been used to indicate the impacts of habitat modifica-

tion [7, 15, 16] to measure the effects of human disturbance [17].

Species identification of Arthropods is a fundamental part of recognizing

and describing biodiversity. Traditionally, identification has been based on mor-

phological diagnoses provided by taxonomic studies. Only experts such as tax-

onomists and trained technicians can identify taxa accurately, because it requires
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special skills acquired through extensive experience. However, the number of

taxonomists and other identification experts has drastically decreased. In some

cases a trained technician could make routine identifications using morphologi-

cal “keys” (step-by-step instructions of what to look for), but in most cases an

experienced professional taxonomist is needed. The use of Arthropods as biotic

indicator is slown down by the high level of expertise required to identify insects.

It is an obstacle to a broad and easy application [18]. Consequently, alternative

and accurate identification methods non-experts can possibly use are required.

Finding automatic methods for such identification is an important topic

with many expectations. One of the most common data that can be used in this

context are images. Images of arthropods can be acquired and further processed

by an image classification system. Such images also have some specificity (see

the next sections) and might require adaptation of existing image recognition

methods, or new methods.

The aim of this paper is to provide an overview of this domain as thor-

ough as possible. It is structured as follows: Section 2 describes with more

precision the scope of this survey and the methodology used to analyze the

literature. Section 3 considers the first step of all approaches, i.e., image acqui-

sition. Section 4 is devoted to features extraction, some of them being specific

to arthropods. Section 5 describes the classification of the data into known

classes. Section 6 details the existing datasets and, finally, Section 7 provides a

discussion on this domain, with some conclusions and perspectives.

2. Scope of this survey and methodology

2.1. Scope and previous surveys

The scope of this survey can be stated as follows: the kind of animals we

deal with are arthropods. In a vernacular manner, we will abusively use the

term insects to denote these animals. The data acquired from these animals

are 2D images: we do not consider for instance other kind of data, such as 3D

images [19], sound [20, 21], genomic data [22], etc. We are especially interested
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in methods that can process 2D images with “normal lighting and shooting”

conditions, that is when images are acquired by standard cameras (even mobile

or embedded devices). Finally, we consider the systems that extract features

from images and that perform a classification of the animals into known classes.

Two previously published surveys are relevant to these scope and aims. In

[23], the authors take the general point of view of species identification and

discuss the current state of the field and possible perspectives. They underline

the key difficulties to solve this problem and the reasons why it is yet no so

much developed. They discuss examples of successful achievements that were

initially made and provide motivations for further studying this problem. In

[24], the authors list a few papers from recent years. In this survey, we adopt

a more focused and detailed level of description than in [23]. In comparison

to [24], we provide more references and a common framework to analyze and

compare them. The proposed survey is more centered on computer science

point of view than the cited surveys. Consequently, it can be very useful for

researchers in Pattern Recognition field. Furthermore, final discussions provide

valuable questions that could be the starting points for researcher who intend

embarking on automatic arthropods identification.

2.2. Problem definition

Image-based arthropod classification could be seen as an application of image

classification. Based on some photograph depicting the specimen, its biological

identity is to be determined. The peculiarities of the problem are three-fold :

taxonomy, image variations and incrementality.

Arthropod species, as for any living species, are grouped into taxons at

several scales. These scales constitute the biological taxonomy which can be

seen as a tree grouping species based on genetic similarity. In Figure 1 are

shown the scales relevant to arthropod classification. The biologists might be

willing to use a scale or another depending on their scopes and applications.

For instance, biodiversity studies need very fine information (down to species

precision) and, conversely, pest management applications require less precise

4



information (say to a genus information). The problem can therefore be seen

differently along granularity in the taxonomy.

Aside from classical object image variations (such as rotation, scale, par-

allax, background or lightning), insect images have more particular properties

such as pose (because specimen appearance varies with the orientation they are

been shown) and deformation (because the specimens are most of the time com-

posed of articulated parts). These aforementioned variations can be referred to

as capture-specific variations in the sense they only depend on capture factors.

About the objects themselves (object-specific variations), age, sex and genetic

mutations are the main factors of visual variations. The most instructive exam-

ple is that of lepidoptera (commonly referred to as butterflies) which can have

extremely different visual aspects along time (being successively caterpillars,

chrysalises and butterflies).

Finally, given the considerable diversity amongst arthropods, classes are

highly numerous and, besides, new classes remain undiscovered. This property

can be seen as incrementality.

order

family

genus

species

Figure 1: The taxonomic scales relevant to arthropod classification

2.3. Methodology

To describe this state of art on image-based recognition of insects, we used

the following methodology. Starting from a set of fourty-four papers, we de-

scribed each paper along several analytic points of view. These analytic points

of view are related to a classical image recognition system. Such a system can
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be decomposed into three sequential phases: a) Image capture; b) Feature ex-

traction and c) Classification. Image capture consists of the tools and methods

used to take photos of the insects (discussed in Section 3). Features extraction

consists of extracting useful visual information out of the pictures (discussed

in Section 4). Finally, classification is the actual step at which recognition is

performed based on the extracted information (discussed in Section 5). The

datasets are the images used to train and test the system (discussed in Sec-

tion 6).

A set of criteria were chosen to analyze the literature from different per-

spectives and summarize it into useful information for further use. Are images

capture with or without constraints? In the wild or in the lab? Are features

domain-dependent or conventional from the computer vision community? What

are the classifiers used in the literature? How is the performance evaluation

carried out? What are the number of classes or the data set size? Are data

sets publicly available or not ? All these criteria can be seen as different di-

mensions or angles to categorize, summarize and identify relationships between

approaches. Once these pieces of information are obtained, the papers were

clustered based on them. Both dimensions and clusters are further exposed

along the next sections.

3. Image capture settings and apparatuses

A first categorization which can be made is based on the type of image

capture setting and on the context of the acquisition. In fact, the acquisition

mode might influence the techniques used for the identification of the insects,

but also the context of application of such algorithms. In this context, several

analytic dimensions can be considered. The first is about acquisition conditions,

that basically deals with the insects (both in the way they are captured and

taken care of) and the way the images are produced (the capture tools and the

overall protocol). The second is what we name as pose constraint, that is how

much we allow the point of view on the insect to be variating. A constrained
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pose setting specifies we want to see, for instance, only the front side of the

insect we capture the image of. An unconstrained pose setting, in the contrary,

induces variability in orientation of the individual and therefore in their apparent

shapes, details and colours. Next, closely related to the pose, the part or area

of the individual is to be considered. Some insects are better recognized from

their wings as others from their entire body.

(a) [25] (b) [26]

Lab-based samples

(c) [27] (d) [28]

Field-based samples

(e) [29] (f) [30]

Multi-individuals samples

Figure 2: Image samples

Therefore we have divided the considered works into two broad categories:

lab-based setting and field-based setting. In a lab-based setting there is a fixed

protocol for image acquisition. This protocol governs the insect trapping, its

placement and the material used for the acquisition (capture sensor, lighting

system, etc.). Lab-based setting is mainly used by entomologists bringing the

insects to the lab to inspect them and to identify them. Therefore, they have

the possibility to manage the image acquisition system. By field-based setting

we mean a capture of insects directly in cultivated fields, without any particular

constraints to the images capture system. Typically the acquisition is made by a

mobile device and the insect is alive when the picture is taken. The application

context of this type of setting is that of a farmer who wishes to identify an insect

to know, for example, if it belongs to a devastating species or not. In this context

no, or little, knowledge of the identification system is required by the user other

than the user interface. At these two categories we add a third, smaller, which

includes the works whose acquisition system is such that in a picture there are

more insects than one. In such setting, a more complex segmentation phase
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might be required before the identification to isolate each insect.

A taxonomy of the reviewed papers is shown in Table 1. For each paper

the taxonomy reports the corresponding bibliographic reference. We will high-

light, in the next paragraphs, the most interesting acquisition systems from the

considered papers (or a group of papers using similar settings).

Category Levels Refs

Lab-based

Manual

Positioning

Constrained

Pose

[31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 19,

41, 42, 43, 44, 45, 26, 25, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55]

Unconstrained

pose
[56, 57, 58, 59, 30, 60, 61, 62, 52]

Automatic Posi-

tioning
[63, 57, 59]

Field-based [28, 64, 27]

Multi-

individuals
[29, 65, 66, 30]

Table 1: Taxonomy of reviewed papers on the basis of image capture setting

In lab-based setting (see examples on Figure 2a and Figure 2b), most of the

acquisition systems are manually manipulated. In [58, 32, 33, 35, 34, 36, 37,

38, 39, 40, 62, 46, 52] the acquisition is made manually on a microscope slide,

with some standard illumination systems (fiber optic light sources, desk lamps,

etc.). In [58], to change the pose of the insect, an interesting trick has been

used body rotation was achieved by first placing two short nylon fishing lines on

either side of the specimen and gently moving a cover slip placed over them by

using the tip of the index finger. In [32, 35, 34, 36, 46, 52, 51] some zoom lenses

are used to have more details of the insect or to capture only some parts (wing,

genitalia, etc.). In [36] live bees captured in the wild are cooled down using an

icebox: this makes them immobile for a time sufficient for the recognition image

to be acquired without causing the bee long-term harm. Also in [37] active

moths were refrigerated to prevent them escaping while being imaged. In [51]

a stereoscope is used in order to avoid a view with obstructed parts. In [61]

the insects were frozen for 20 min and then randomly and manually placed on
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a white balance panel. The images were taken under different orientations and

two poses (top and side view).

In [63] the main goal of the paper is not the insect identification but the

detection of insects in bulk wheat samples. Nevertheless, it is interesting to

note that their acquisition system could be used also for insect identification.

Samples, that are a blend of wheat kernels and dockage including some grass

seeds, are placed in a crate cell, are captured by a color capture device, with a

backlight illumination. To reduce reflection, a dome with flat matte white paint

inside was placed over the samples.

There are also semi-automatic systems. In [57, 59] the authors propose

a semi-automated mechanical manipulation and imaging system that allows

the positioning of the specimen and its rotation to obtain the best view for

classification. The decision of the view is taken by the human operator. In [19],

a similar but more complex system is proposed: a mirror system is providing

a split image, with two views of the insect approximately 90◦ apart. Providing

two simultaneous views increases the likelihood of good dorsal views for 2D

classification, and it affords greater robustness for 3D reconstruction since the

camera viewpoints of the two views are fixed.

In [41, 45, 49] the acquisition system is similar to the above-described ones,

but the insect is captured with a classic color digital camera without microscope,

so the insect has a “natural” size in the image. In [49] a transparent plastic stick

was fixed to a piece of foam and held at the far end of a needle that was inserted

into the specimen, in order to eliminate the shadow due to the fill lights used.

Typically in field-based setting (see Figure 2c and Figure 2d) there is no par-

ticular acquisition hardware and the insects are captured by standard cameras

or mobile devices in open field. In [27], even if the acquisition is performed on

open fields, pheromone traps are used and cameras are being integrated to the

trap setup in order to improve the precision of insect information captured and

facilitate the subsequent segmentation phase.

In multi-individuals (see examples on Figure 2e and Figure 2f) setting [30,

66, 65, 29], the positioning of the insect is also manual and is similar to the
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setups described for manual setting in lab-based category. In [30] the rice pests

caught in traps are spread on the glass plate with as little overlap as possible,

which will make the following image segmentation and identification easier. The

acquisition setting is quite standard, but an interesting particularity is that two

digital cameras above and below the glass plate are fixed on a stainless holder

in order to have multiple poses of the insect without manipulating either the

insect or the acquisition system.

In conclusion we can say that in field of insect identification, the lab-based

setting is still the most widely used setup and the positioning of the insects is

made mostly manually with a constrained pose (see Table 1). More recently,

the study is done considering several individuals in a single image, but the

acquisition system is still largely manual. There are still few works that develop

insect identification systems in open field, probably because of a more difficult

recognition context (cluttered background, live insect, etc.). In fact in some

open-field setting some expedients are used to have an image simple to process.

3.1. Advantages and drawbacks

With the large increase of mobile devices, an equivalent growing open-field

captures is expected. In fact such a system is more flexible and it can be used by

a wider range of users. Open-field captures do not require special hardware and

there are no constraints on insect pose. However this kind of systems are more

complex in terms of algorithm design and it is hard to obtain good performances.

Anyway, lab-based settings still remain a configuration that will be studied

in the future. Indeed, biologists have some specific research that need insect to

be studied in laboratory. Therefore, while open-field capture will be used by

non-expert people, lab-based setting will continue to grow because of specific

need of biologists. The advantage of lab-based setting, from the point of view

of the classification system, is the possibility of constraining the insect so that

the recognition task is less complex thanks to less variability. Nevertheless, the

main drawback of lab-based setting is the manual manipulation of the capture

system (posing of the insect, illumination fixing, etc.). This manual task is very

10



Figure 3: Feature extraction evolution [67]

tedious and time-consuming and researcher ask more and more for automatic

manipulation systems.

In order to speed up the process of recognition, multi-individuals setting are

conceived. In this case, the time is reduced, because of multiple classification

in a single capture. However, again the classification system has to deal with

more image processing problems, like detection of insects that is a difficulty not

present in original lab-based setting.

4. Feature extraction

Focusing on feature extraction, we listed the two following aspects: the

segmentation which is the data extraction phase such that the insect is isolated

(foreground/background detection) and the types of features used (whether they

are local, global and what information they model).

4.1. Foreground/Background detection

Before the features can be extracted, the system needs to know which zone

of the image is important. This part is taken care of by segmentation. This

segmentation problem was tackled in several ways, as listed in Table 2.

In some cases, segmentation is learned in a supervised manner as in [63,

27, 46]. [46] feeds the entire image to the classifier, which is supposed to learn

to discriminate only on foreground and therefore to recognize it. In [27], the
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Category Levels Refs

No segmentation [63, 27, 46]

User segmentation
[37, 25, 26, 48, 39, 55, 32, 40,

33]

Thresholding

Manual or static
[56, 54, 51, 29, 28, 68, 38, 25,

43, 52, 44, 49, 41, 45]

Clustering [64, 28, 68, 62, 41, 45]

Edge detection [58, 28, 68, 25]

Other

Image apriori [36, 50, 38]

Background subtraction [30, 31, 35, 34]

Snake [43, 66]

Table 2: Taxonomy of the reviewed papers on the basis of segmentation

approach relies on learning on both positive and negative example images. Neg-

ative example images are images where there is no insect but only foreground.

Learning on such images enables the system to ignore the background.

When segmentation is irrelevant, it can be asked to the user as in [37, 25, 26,

48, 39, 55, 32, 40, 33]. An interface is shown to the user so that he or she can

select the region of interest by drawing its outlines. Of course, manual segmen-

tation might be a tedious and time-consuming task considering how numerous

the images can get. That is why segmentation is worth automated most of the

time.

Some segmentation methods rely on thresholding which is basically splitting

the image histogram into several groups which correspond respectively to the

object and the background. The simplest way of doing thresholding is to set the

intensity value that separates the two groups. This value can be set statically in

the program or by the user who can select the one which yields the best result

as in [54, 53].

Another way of performing thresholding is to see it as a clustering problem

where two or more clusters (which are the regions) have to be formed [64, 28, 68,

62, 41, 45]. Otsu’s method criterion is about choosing the clusters such that the

intra-cluster variation is minimized while the inter-cluster one is maximized [41,

45, 68]. k-means is used onto the color space to search for centroids representing
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the different regions in the image based on color similarity [64, 62]. [28] uses

ISODATA, a clustering algorithm that builds clusters with a given standard

deviation threshold. [41, 45] use meanshift clustering in the color space as a

preprocessing step to Otsu.

Some articles build their segmentation over edge detection. Most of them

use Sobel filters to get the gradient of the image and use filling operators to get

a first mask [28, 68, 25]. [58] uses order-statistic filters to get the edges of the

images.

There are other techniques used to segment the images. [43, 66] use more

active contours (snake) that take a simple thresholding mask as a seed point to

get a more accurate segmentation. [30, 31, 35, 34] use background segmentation

(which implies the background to be constant).

Finally some studies base their segmentation pipelines on image apriori. [38]

assumes the object in the image yields the longest outline while [36] searches for

lines on wing images and [50] uses the symmetry of lepidoptera as a detection

criterion.

4.2. Three general feature extraction methods

For decades, constructing a pattern-recognition or machine-learning system

required careful engineering and considerable domain expertise to design a fea-

ture extractor that transformed the raw data (such as the pixel values of an

image) into a suitable internal representation or feature vector from which the

learning subsystem, often a classifier, could detect or classify patterns in the

input. To increase feature performance, learning mid-level features on top of

handcrafted ones has been put forward. During the last decade, the amount

of human labor has been reduced by representation learning. Representation

learning is a set of methods that allows a machine to be fed with raw data

(pixels) and to automatically discover the representations needed for detection

or classification. Figure 3 illustrates the concepts of handcrafted, mid-level and

learned features. In Table 3, the papers from the literature are organized ac-

cording the following criteria: a) Handcrafted features; b) Mid-level features; c)
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Category Levels Refs

Handcrafted

features

Domain-dependent
Wing’ Venations [36, 38, 48]

Geometry
[25, 53, 54, 26, 40, 49,

63]

Global and generic

image features

Shape
[66, 29, 58, 56, 43, 30,

52, 44, 26]

Color
[56, 41, 43, 28, 30, 52,

26]

Texture
[33, 41, 43, 30, 39, 52,

51, 26]

Raw Pixel [46]

Local features
SIFT

[19, 42, 65, 47, 57, 60,

61, 59]

Others [28, 50, 27, 45]

Mid-level features

Unsupervised

representations

BoW [19, 57, 60, 61]

PCA [32, 55, 31, 35, 34]

Supervised

representations

MLP [56, 33, 46]

Sparse Coding [27, 42, 47, 64]

Hierarchical repre-

sentations
Auto-encoder [52]

Table 3: Feature taxonomy for insect recognition

Learning Hierarchical Representations.

4.3. Fixed/Handcrafted Feature Extractor

4.3.1. Domain-depend features

In [36], the feature is based on the venations present in the bees’ wings,

and the cells they enclose, to generate numerical feature vectors. Authors in

[36] could say the venations in the bees’ wings are almost as fingerprints. In

the same direction, [38] the coordinates of some characteristic points on the

wing are used to compare vein patterns. In [49], owlflies wings are described

by Elliptic Fourier coefficients. The feature extraction algorithm incorporates

prior expert knowledge about wing veination. More recently, [48] studied the

impact of feature selection on top of descriptors presented in [38].

In [53, 54, 26, 25], series of geometrical features including area, perimeter,

holes number, eccentricity and roundness have previously been tested. All these
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features are intuitive because they can be directly measured or simply calculated

from images. However, these precisely extracted features are easily affected by

factors such as the posture of insects or the shooting angle. Furthermore, it is

usually difficult to compute the real size of insects from the images because of

the lack of some shooting parameters such as object distance.

4.3.2. Global Image features

General image features are generic descriptors that can be used to represent

any kind of images not specifically insects. However, in the literature there is

distinction between local and global features whether features ares extracted

locally on specific area of the image or globally on the whole image.

In [66] Hu moments (Hu), Elliptic Fourier Descriptors (EFD), Radial Dis-

tance Functions (RDF) and Local Binary Patterns (LBP) are extracted as shape

descriptors. LBP features seem to outperform the rest of the features in recog-

nition rate based on the individual performance of each method. The results

from the underlying features are then fused using weighted majority voting to

obtain a decision. In [26], a series of shape, color and texture features was de-

veloped that draw on CBIR and allow the identification of butterfly images to

the taxonomic scale of family. In [64], the objective is to detect pests into an

image, and L∗a∗b∗ color space is used as features.

In [43, 41, 30, 56] global features are used to describe the entire insect. A set

of 54 features including geometric features of insect, contour features, moment

features, texture features and color features are extracted. In [29, 58] features

were extracted from the shape descriptors computed on the binary mask of

the Region Of Interest (ROI). The measurements taken were area, convex area,

eccentricity, major axis length, minor axis length, perimeter, solidity, roundness,

compactness, extent, aspect ratio. In [33, 51] wavelet decomposition of the

images is performed.
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4.3.3. Local features

A crucial step for identification or classification and retrieval is to describe

images by extracting a set of local feature descriptors, encoding them into high-

dimensional vectors and then fusing them into image-level signatures. In [28],

images are preprocessed to detect insect location and then global color features

are measured (color frequency histograms). Finally, local color features are ex-

tracted from patches. In [50], the core of the system is a probabilistic model

that infers Semantically Related Visual (SRV) attributes from low-level visual

features of moth image. The main motivation is to obtain a human-readable

representation of the image. In [45], the approximate shift invariant property

of the dual tree complex wavelet transform (DTCWT) and its good directional

selectivity in 2D make it a very appealing choice for insect image recognition.

These local and global approaches are combined: a first distance between images

is obtained by conventional region-based bag of words techniques and a second

distance is computed through DTCWT. The two distances are then merged to-

gether. Finally, the very well-known SIFT (Scale Invariant Feature Transforms)

[69] features are extracted in [19, 57, 61, 42, 47, 65, 59]. SIFT features were

completed by multiple order gradient histogram (MOGH) in [60]. In the same

direction, [27] SIFT features are also completed by with color, texture and shape

features. In [59, 65], SIFT features are extracted and directly matched between

paired-images. The number of positive putative matches is used to estimate the

similarity of the two images.

4.4. Mid-level features

In the Digital Automated Identification System (DAISY) [35, 34, 32, 31, 55],

images are processed using filters to detect edges (top-hat filer) and then noise is

removed by applying a Gaussian blur. It adopts a principal component analysis

(PCA) method to acquire image features that contain nearly all the information

of an image. PCA features are more suitable for species identification because

the great amount of detailed information collected with PCA can weaken dif-

ferences between high-level categories such as orders. The basic algorithm of
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DAISY is based on the methods for human face detection and recognition via

eigen-images. DAISY requires user interaction for image capture and segmen-

tation, because specimens must be aligned in the images. In Russell et al. [39],

SPIDA (Species IDentification Automated) was created as a ground spiders

identification system. SPIDA’s feature vector is built using images of the spi-

der’s external genitalia from a subset of components of the wavelet transform

using the Daubechies 4 function [70]. This method also has the drawback that

the specimen has to be manipulated by hand, and the image capture, prepro-

cessing, and region selection also require direct user interaction.

There is a large body of literature [19, 57, 61, 60] showing the successful

application of the bag-of-keywords approach. In this approach, local-feature

data is extracted from the available images and characterized by computing a

feature vector called a descriptor. A visual dictionary is created by clustering a

subset of the training data in the descriptor space, creating clusters that define

dictionary words. This dictionary is then used to map the region descriptors of

a novel image into words, and to map the bag of features for an image into a bag

of words that is used to construct a representation of the image. Histograms

of these words have been successfully used as intermediate image representa-

tions. Once an intermediate representation is constructed, the remainder of the

training data is used to train a classifier to recognize object classes.

In this series of studies regarding insect identification, the progression of

recognition methods from simple pattern recognition approaches to unsuper-

vised and later discriminative dictionaries can be seen.

To improve the classification accuracy, [42, 47, 27] develop an insect recog-

nition system using advanced multiple task sparse representation and multiple-

kernel learning (MKL) techniques. As different features of insect images con-

tribute differently to the classification of insect species, the multiple-task sparse

representation technique can combine multiple features of insect species to en-

hance the recognition performance.

Another way to build discriminative mid-level features is to feed a Multi

Layered Perceptron (MLP) with handcrafted features as in [56, 33] or directly
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from the raw pixels as in [46]. However the number of feature abstraction layers

is limited to two because of the vanishing gradient problem.

4.5. Learning Hierarchical Representations

Over the last few years, a large amount of research on visual recognition has

focused on learning low-level and mid-level features using unsupervised learning,

supervised learning, or a combination of both. The ability to learn multiple lev-

els of good feature representations in a hierarchical structure helps to construct

sophisticated recognition systems.

In [52], series of geometric, shape, invariant moment, texture and color fea-

tures are given as an input to a Stacked Denoising Autoencoder. This deep

learning architecture consists of multiple levels of non-linear operations and is

an effective way to represent high-level abstractions. Automatically learning

features at multiple levels of abstraction allows a deep learning system to learn

complex functions mapping the input to the output directly from data [71].

The goal in [52] is to solve the pose variety problem. Compared with general

auto-encoder (AE) architecture, DAE architecture adds the noise to the train-

ing data, which means that the DAE learns to detach noise from real data. It

makes the encoder learning more robust to the expression of the input signal.

4.6. Advantages and drawbacks

The first attempts of image-based recognition [53, 54] used morpho-metrics

as features. Morpho-metrics are distances or ratios between venations present

on the wings. These morpho-metrics were extracted and used to separate species

using Linear Discriminant Analysis. Morpho-metrics being specific to winged

species, more generic approaches were to be found. [35, 34, 32, 44, 36] established

the DAISY system to classify wasp insect images using PCA. To improve clas-

sification accuracy, [55] applied DAISY to recognize insect images by analyzing

their wing patterns and shapes. [36] proposed an improved ABIS (Automatic

Bee Identification System) system using support vector machine (SVM) and ker-

nel discriminate analysis based on geometric features of wings (such as length,
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angle, and area). Moreover, many literature works have focused on constructing

object appearance models, a key part of object classification. Generally, based

on their appearance models, most object feature descriptors can be categorized

as either global features or local features. [39] adopted global features (includ-

ing color, texture, and geometry) to classify insect images and obtained good

results using high-quality images. However, because the features are very sen-

sitive to rotation, scale, translation, and viewpoint changes, this classification

method did not work well on objects with large intra-species variation or high

inter-species similarity. To address these issues, [61] developed a local feature-

based insect identification scheme to account for variations in insect appearance.

Furthermore, [62] devised an image-based automated insect identification and

classification method using three models: an invariant local feature model, a

global feature model, and a hierarchical combination model. [65] extended the

LOSS algorithm [68] for analyzing the geometrical characteristics of insects to

improve insect classification. A drawback is the limited expressiveness of these

models because insect appearances can only be represented by hand-crafted

descriptors which makes it difficult to handle significant insect view and pose

changes simultaneously. For the same reason, some local features based on

SIFT such as CFH [57], bag of words [61, 19, 61, 60] or ScSPM [42] that are

currently used in insect species recognition are not quite suitable in high-level

(order level) insect identification. It is well known that natural images can be

sparsely represented using a sparse linear combination of a few elements from

a trained dictionary. In contrast to most existing insect-classification methods

that directly operate on low-level features or cues, sparse coding can learn in-

sect appearances from raw features to quantify insect appearances by means of

sparsity [42, 47, 27]

Over the last few years, in [52] the ability to learn multiple levels of good fea-

ture representations in a hierarchical structure helps to construct sophisticated

recognition systems. The benefit of the sophistication of recognition systems is

the release of the imaging constraints. The perspective is therefore about han-

dling more and more noise and variations so that both the capture step gets less
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and less tedious and the classification gets improved in handling more complex

class configurations.

5. Classification methods

Category Levels Refs

Monolithic

Discriminative

Linear [54, 53, 38, 40, 63]

SVM
[30, 49, 47, 51, 42, 27, 61,

28, 48, 25]

Neural nets [52, 33, 58, 46, 44, 48, 25]

Decision trees [28, 48, 57]

Generative

Parametric [57, 43, 28, 48]

Density estimation [61, 43]

Other [31, 32, 35, 34, 64]

Combinations

Committees [66]

Boosting and bag-

ging
[19, 57, 28]

Other [33, 39, 29, 62]

Instance-based
k-NN

[66, 61, 43, 28, 26, 45, 41,

65]

Other [50]

Table 4: Taxonomy of the reviewed papers on the basis of classification

From the perspective of classification, we used the following pieces of infor-

mations: the granularity of the classification (the scale in the taxonomy tree

whether it’s to a species, families, order or another level precision), the number

of classes, classifier(s) used, type of validation and the accuracy of the results.

The original pattern recognition framework assumes there is a clear bound-

ary between extracting information from raw data and classification. The al-

gorithms fulfilling these two tasks are thought as independent processes and

seen as blackboxes from one another point of view. However, the boundary

is becoming blurrier with some recent work (see representation learning [72]

for example). In these approaches, the features and the classifier function are

learnt at the same time during the learning stage. However, most of the papers

studied in this article keep a sharp boundary between feature extraction and
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classification. In this section, the classification stage is investigated as well as

the way it has been applied to insect image recognition until now.

As for the previous chapters, we consider the papers under a certain catego-

rization, which is depicted in Table 4: a) Monolithic classifiers; b) Combinations;

c) Instance-based.

5.1. Monolithic classifiers

The basic way to do classification in pattern recognition is to train a single

system on the actual data.

Classification is the process of actually recognizing an individual as belonging

to a certain population among others. There are two ways to see classification

conceptually: discriminatively and generatively speaking. This will be discussed

about along the next paragraphs.

5.1.1. Discriminative methods

As a discriminative process, classification is setting boundaries on a given

feature space between the different populations in order to distinguish them.

Stochastically speaking, it is said that discriminative approaches try to model

p(C = c|x), i.e. the probability of occurence of class c given x (features vector).

A first approach to discriminative classification is to find a linear bound-

ary between classes. [61, 43] uses the least squares approximation method to

find this boundary. In [54, 53, 38, 40, 63], Fisher criterion (Linear Discrimi-

nant Analysis) is used to the same end on morphometrics. However, data may

not be linearly separable and therefore linear discrimination is likely to fail. In

[30, 49, 47, 51, 42, 27, 61, 28, 48, 25] SVMs are in use. While [51, 47, 42, 28]

use linear SVM, [61, 30, 49, 48] use kernelized SVMs. [61, 48] use SVMs with

the polynomial kernel. [30, 49, 25] use the gaussian Radial Basis Function of

standard deviation σ as a kernel. σ is considered as a free parameter in the

frame of such a use. The usual way to tune σ is trial and error. However, [73]

proposes a genetic algorithm to find this parameter which is used in [49]. [27]

uses Multiple Kernel Learning, which is a SVM using an optimally chosen com-
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bination of different kernel types in order to efficiently learn on different feature

modalities.

As used in [52, 33, 58, 46, 44, 48, 25], neural networks are another discrim-

inative approach where non-linearity is induced through activation functions.

In [46], a neural network is trained with scaled conjugate gradient-based back-

propagation. Several parameters and network sizes (from no to two hidden

layers) are tested on the following recognition task: discriminate a single pest

from many non-damaging insects. While a one-hidden-layer network is proven

to be a universal approximator, the authors couldn’t get satisfying result with

one single hidden layer. A possible explanation is, because the inputs are raw

pixel, the MLP must learn a feature level. Finally, [44] uses Quality Threshold

ARTMAP, which is an incremental learning network technique. An ARTMAP

network is a combination of unsupervised modules (which are self-organizing

maps): one operating on features, one on the classes and a last one in between.

Decision trees are used in [28, 48, 57]. [28, 48] use classic decision tree

generated with C4.5 algorithm. [59] uses Logistic Model Trees which differ from

classic trees in that its nodes are logistic regression classifiers.

5.1.2. Generative methods

From a generative perspective, classification is trying to estimate the like-

lihood for an individual to belong to a given population. To keep using the

probabilistic point of view, generative approaches are modeling p(x|C = c), i.e.

the probability of occurence of feature vector x if considering the class c.

[59, 43, 28, 48] use parametric probability density functions to estimate

p(x|C = c) for each class c. [59, 48, 28, 43] use Näıve Bayes classifiers which

assume the features are statistically independent. Logistic classifiers (used in

[48]), however, don’t postulate on statistical independance. Rather than trying

to find a distribution by tuning probability density functions, non-parametric

methods rely on the instances themselves. [61, 43] use Parzen-Rosenblatt win-

dow classifiers to estimate the probabilities.

Other generative methods are used besides probability density estimation. In
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its first version, DAISY [31, 32, 35, 34] uses a non-parametric statistical test to

evaluate the quality of the PCA reconstructed image with respect to the original

image. The test used is Kendall rank correlation coefficient (more commonly

referred to as the τ -test). [64] uses a correspondence filter to detect a given

shape and localize it on image. It is a frequency domain filter which is computed

through an optimisation process such as a linear optimisation program. The idea

is to create such a filter so that the peak of correlation and the localisation of

the object we search in the image match up.

5.2. Combinations

But when it comes to issues such as overfitting, a monolithic classifier is

somehow not enough and that is here where ensemble learning is relevant. The

idea of ensemble learning is to use a combination of said weak classifiers to get

a strong classifier [74]. Classifier combinations also aim at improving simple

classifiers performances.

In [66] four k-Nearest Neighbour classifiers are trained on different feature

descriptors. Their decisions is combined into a weighted majority vote: it is a

committee of k-NN classifiers. [19, 57] combine decision trees in more complex

ways. In [57], logistic model trees are boosted with AdaBoost. The classifiers

are incrementally trained, each classifier being trained on classification error

weighted according to the previous classifier error so that it can learn more

where it was weaker. [60, 29] use several classifiers to perform dichotomies on

the dataset. In [60], the decision is made by making SVMs compete against

each other in a tennis-tournament-like process.

SPIDA [33] not only experiments flat neural network classifiers but also tests

multi-granularity discrimination: a first neural net discriminates individuals at

the genus level before a second one performs likewise at the species-level in

the actual genus. The system is found to have no difficulty to discriminate

between genuses but some between species inside different genera. In [39] a

different structural approach is adopted: A set of neural nets were trained (one

per taxon). Each neural network has two outputs: one that is trained to be
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stimulated when the individuals belongs to the taxon (known as pro-species

output) and the other when it’s not (the anti-species output). The final decision

is given as follows: the top-3 scores from all the pro neurons are considered and

those who are above a given threshold are considered as answers and shown to

the user. In [29], a stacked ensemble of neural networks is used to get satisfying

classification results (compared to those of a single neural net classifier). It is

in fact a decision-tree where every node decision is given by a neural network.

[62] uses a different framework which is based on recognition relevance. If a

first classification correlation level is not high enough, a second classification

is operated. It stacks up a global feature classifier (based on Bayes classifiers)

on top of a local feature classifier (with Nearest Mean classifier) in order to

become invariant to pose variabilities. The global classifier is first called and, if

the matching probability is too low (under a given threshold), the local feature

classifier is called to give the final decision.

5.3. Instance-based

The previously mentioned methods rely on characterizing classes in the fea-

ture space either generatively or discriminatively. Another way of tackling the

classification problem is to compare the unknown image not to classes them-

selves but to known occurences (which turn out to be the learning images).

[66, 26, 45, 41, 65] use nearest neighbour classification to get a final decision.

[26] uses a nearest neighbour classifier with a weighted L2 norm: the authors

want to test the classification within modifying the weights of the different

features.[41, 45, 65] base their approaches on refining a candidate list at each

level. A first classifier gives a match list based on some similarity measure

while a second one refines that list. [41] experimented a two-level classification

workflow. The first level is a coarse matching step where a histogram similarity

measure is done and candidates are filtered based on a given similarity-threshold

value. The second level classification is done by a k-NN classifier which performs

on some texture features. [45] first uses an integrated region matching process

on clustered image to find k image candidates. The final answer is given by a
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Nearest Neighbour classifier.

[50] relies on a CBIR approach which is not about getting a final answer but

just providing a match list to the user. The decision task falls therefore to them.

In the scope of this study, Relevance Feedback is used as a performance booster.

The user sends a query and is asked about the answer relevance. If trust has

been granted to the user (because he passed a recognition test successfully),

the system distorts the feature spaces so that the non-relevant items are further

away from each others.

5.4. Methods comparison studies

In some studies, features are extracted from the images and the choice of

a classifier is not really guided. They usually take a set of classifiers to apply

to extracted features and keep the one that maximizes the recognition rate on

sample data. Results of some of the tested classifiers are somehow investigated.

Table 5 details the different methods used in each study and gives the recognition

rates per method.

[61] [43] [28] [48] [25]

Least Square 84.2 83.3

LDA 64.0

SVM 88.4 85.0 60.0 92.0

Decision tree 58.3 36.0

MLP 58.5 76.0

Bayes 89.9 65.9 65.2

Logistic 63.2

Parzen density 86.3 84.7

Random forest 83.2

k-NN 77.4 83.8 71.6

Nearest Mean 89.5 63.6

Table 5: Recognition rates in comparison studies (bold figure for best rate)
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5.5. Advantages and drawbacks

Although discriminative methods are powerful tools to accurately split the

feature spaces, their lack of incrementality can be a restriction in the scope

of broad insect recognition where new species can be encountered. Generative

methods are more fitted to this end since the classes probabilities are considered

independently. Adding a class is then not a problem.

When it comes to evolving classes (unknown individuals encountered that

belong to already existing classes), instance-based are handier since the new

individuals can be integrated to the instance. Going further, the nature of

insect recognition as a pattern recognition problem can be called into question.

Given the potentially high cardinality of the classes set and the high intra-class

variability, it might be more relevant to try to match the unknown individual

to a known one than to an entire class. This feature is interesting from the user

perspective because they get the closest known individuals instead of the class

information. The problem could then be seen more as a metric learning one.

In such a frame, the similarity function is to be learnt so that the individuals

in a class are close to each others and as far as possible to other classes in the

similarity space. The learning process would therefore be class-agnostic in the

sense the learning phase only needs to know which individuals pairs are similar

and which ones aren’t. The class is induced by the individuals and their labels.

6. Datasets

To characterize the datasets, we noted the number of instances (images)

per class and overall as well as per training, validation and testing subset. The

granularity is a good indicator as well. Granularity is the scope in the taxonomy

where a study is located. It can be as specific as to a few species in a single

family or as wide as over several orders (see taxonomical scales in Figure 1).

Every dataset used in the studied literature are listed in Table 6.

The first comment one can make is that the granularity is often very thin

and the variability very subtle. We most of the time talk about species in a
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few specific orders or families. In fact, studied sets are tightly bound to the

projects biological and environment-related problems such as recognizing a very

specific group of pests for a given orchard. Some studies are in the frame of

Integrated Pest Management [75] Pests for different orchards were investigated

such as rice [30], palm [46], apples [56] cotton [29] or miscellaneous vegetables

[64, 65, 68] pests. [52, 61, 43, 37, 66] focus on moths. Some others deal with

biodiversity assessments like the BugID project [76, 77, 19, 59, 57] and [60] which

focus on aquatic myriapods. These insects, when found in rivers, are used to

perform bioassessments regarding water quality. [58] does likewise to assess

marine life by recognizing copepods populations. ABIS [36] aims at quantifying

bees populations regarding their different species. Bees are the main pollinators

and are therefore essential for crops to grow.

Some studies deal with coarser problems [25, 26, 56] such as families of

butterflies [26] or different orders [25] while some studies test the performances

of their methods on different granularity levels [33].

There are almost a dataset per article, in most cases because every study

has its focus on both the capture of images and the insect taxons involved. The

result here is we miss a reference set.

7. General discussion

Automated insect identification has been intensively studied over the last

three decades, including computer vision-based systems for the classification of

insect species.

From all the considered works emerge the following questions:

1. What is the least imaging effort to make in order to get satisfying results?

2. How to define the problem with respect to the taxonomy tree?

3. Is image-based insect recognition more than an application of image clas-

sification?
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7.1. What is the least imaging effort to make?

The first approaches of insect-image classification used very constrained and

low-tolerance imaging protocols such as with flatbed wing images. Then came

methods using region-of-interest segmentation on plain or weakly cluttered back-

grounds. Finally, the plunge towards dealing with complex-background images

has yet to be taken although some local methods have been used to this end.

Considering generic image classification, Convolutional Neural Networks have

been acknowledged as state of the art in a quite short span of time regarding

their high and surpassing performance in terms of both accuracy and invari-

ances. In the set of studies being scrutinized here, none has experimented on-

pixel classification further than through classical shallow MLP [46] on one hand.

On the other hand, deep hierarchical approaches aren’t represented further than

Stacked Denoising Autoencoders in [52].

However, important characteristics regarding deep learning in general should

be taken into account regarding the insect-image classification problem: learning

deep hierarchical representations requires a notably larger set of example images

than for shallow learning. Assuming the insect images harvest is a more tedious

task than for generic images (which is tedious enough for getting millions of

images), this issue is the main limitation to the use of CNNs. Finally, no article

applied the transfer learning paradigm in order to take the benefit of a pre-

trained deep hierarchical representation. Using knowledge gained on larger but

generic dataset such as ImageNet as a learning basis to recognize insects could

be a way to tackle the image volumetrics problem.

7.2. How to define the problem with respect to the taxonomy tree?

As for any other classification task, the problem has to be modeled consider-

ing both the classes and the relations between them. Are the classes close to each

other? Do they cover variability? Does that variability make the classes cross

each other? To sum up, what are the variabilities both between the categories

(inter-class) and inside (intra-class) them?
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The first intuition is these properties vary along the taxonomy tree (see

Figure 1). The smaller the scale is, the finer the intra-class variations. Small

scale insect recognition problems tend to be fine grained object recognition

problems. At this scale, the main issue is the intra-class variations can be as

strong as and even stronger than the inter-class ones [61, 62, 52, 57, 39].

Does it go to less fine-grained when we climb up the tree towards a coarser

level? Even though macro-taxons are not formed on morphological criteria, the

genetical proximity induces likelihood of visual similarity. [33] genus-level results

are way superior than the species-level ones. Even further, their hierarchical

experiment seems to yield good results: a first set of neural networks identifies

the genus and a second set deals with contained species. This assertion has to

be taken carefully due to the low number of classes that are tested here.

On another point of view, natural phenomena (biodiversity resulting in inter-

class similarities and intra-class differences) bring more difficulties for insect

identification at the order level than that at the species level [25]. However, it is

most often found that the similarities in species within a single family and the

differences among species of separate families are prominent enough to [allow]

identification [25]. This assumption calls another one: To make upscaled insect

recognition efficient, every sub-class (or sub-taxon) must be collected. Same

observation is made in [26] at the family level: higher results are observed for

higher taxon coverage.

The macro-groups cannot be considered as uniform populations where the

individuals are equivalent. These groups must be learnt by considering their

respective subgroups equally.

7.3. Is image-based insect recognition more than an application of image clas-

sification?

This question could be rephrased as “Are there intrinsic properties to in-

sect images so that insect recognition is a specific computer vision problem in

itself?” To provide the beginning of an answer, the characteristics regarding

insect recognition must be considered. Aside from classical object image varia-
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tions, pose is a fairly critical variation type that is tackled in [52]. Deformation

is one potential characteristics of these objects due to articulated parts [57, 60].

However, these variations can occur under equivalent forms in other objects

categories. To take the example of face recognition, age is an object-specific

variation factor which can be compared to the insect age. Regarding the vi-

sual statistical and structural properties of such images, apparently no study

investigated these aspects.

Observations on the classification perspective emerge from the conclusions

in Subsection 7.2: taxonomy does not reflect visual similarity at any location.

This heterogeneity creates complex classes configurations at a coarse level as

previously shown but also brings about the dynamics of a potential evolving

classification tool. In a context where specimens are being encountered along

time, i.e. the construction of the classes is incremental in some sense, new

groups of specimens might appear at any moment. As a consequence on a fine

level, class are likely to add up when unencountered taxons appear. A dual

assertion can be made at the coarse level: when sub taxons add up and since

taxonomy is not heterogeneous, the macro-taxon is incrementally defined by its

sub-taxons. Depending on the granularity, the problems can reveal two kinds of

incrementality : class add-ups and incremental class definitions. These systemic

concerns have not been addressed yet in the literature since the datasets are

fixed.

Even though this problem has interesting properties, its singularity regard-

ing pattern recognition and image analysis remains unsure. Besides, generic

methods are the most used methods in the recent works and it will not be pos-

sible to compare methods as long as the experiments are not performed on a

common dataset.
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Pacheco, R. Guevara-González, Machine vision algorithm for whiteflies

(Bemisia tabaci Genn.) scouting under greenhouse environment, Journal

of Applied Entomology 133 (7) (2009) 546–552.

38

http://dx.doi.org/10.1016/j.compag.2012.08.008
http://www.pamitc.org/cvpr15/files/lecun-20150610-cvpr-keynote.pdf
http://www.pamitc.org/cvpr15/files/lecun-20150610-cvpr-keynote.pdf


[69] D. G. Lowe, Object recognition from local scale-invariant features, in: Com-

puter vision, 1999. The proceedings of the seventh IEEE international con-

ference on, vol. 2, IEEE, 1150–1157, 1999.

[70] I. Daubechies, The wavelet transform, time-frequency localization and sig-

nal analysis, IEEE Trans. Information Theory 36 (5) (1990) 961–1005.

[71] Y. Bengio, Learning deep architectures for AI, Foundations and trends R©

in Machine Learning 2 (1) (2009) 1–127.

[72] Y. Bengio, A. Courville, P. Vincent, Representation learning: A review

and new perspectives, IEEE transactions on pattern analysis and machine

intelligence 35 (8) (2013) 1798–1828.

[73] L. Guo, D.-S. Huang, W. Zhao, The optimization of radial basis proba-

bilistic neural networks based on genetic algorithms, in: International Joint

Conference on Neural Networks, vol. 4, IEEE, 3213–3217, 2003.

[74] L. Rokach, Ensemble-based classifiers, Artificial Intelligence Review 33 (1-

2) (2010) 1–39.

[75] P. Geier, L. Clark, An ecological approach to pest control, in: Proceedings

of the eighth technical meeting. International Union of Conservation of

Nature and Natural Resources, Warsaw, 10–18, 1960.

[76] E. N. Mortensen, E. L. Delgado, H. Deng, D. Lytle, A. Moldenke,

R. Paasch, L. Shapiro, P. Wu, W. Zhang, T. G. Dietterich, Pattern recogni-

tion for ecological science and environmental monitoring: An initial report,

Automated Taxon Identification in Systematics (2007) 189–206.

[77] E. N. Mortensen, H. Deng, L. Shapiro, A SIFT descriptor with global

context, in: Proceedings of CVPR 2005, vol. 1, 184–190, 2005.

39



Insects Granularity Number

of tax-

ons

Avg.

Nb. of

images

per

taxon

Capture

type

Constrained

pose?

Part of in-

sect

Publicly

available

Used in Best reco

rate (*

means avg

reco rate)

Lepidopterans species 100 4 lab-based Yes Wings No [41, 45] 85.00%

Ichneumonidae species 5 50 lab-based Yes Wings No [31, 34,

32]

94%

Midges species 49 20 lab-based Yes Wings No [35, 32] 86%

Macromoths species 237 3 lab-based Yes Whole No [37, 28] 85.00%

Moths, but-

terflies and

caterpillar

species 4500 8 lab-based Yes Whole Yes

(http://janzen.

sas.upenn.edu/)

[50] (par-

tial use)

53.00%

Leafhoppers species 3 N/A lab-based Yes Whole No [54] 73.00%

Copepods species 8 30 lab-based No Whole No [58] 98.00%

Miscellaneous

orchard

insects (mul-

tiple poses)

species 9 162 lab-based Yes Whole No [61, 62,

52] (par-

tial use)

[43]

96.60%

Miscellaneous

orchard

insects (trap-

based)

species 5 128 lab-based No Whole No [62, 52]

(partial

use)

94.10%

Tephritidae species 20 7 lab-based Yes Whole or

part

No [42, 47] 88.50%

Many orders orders 9 123 lab-based Yes Whole No [26] 32%

Apple pests species 6 200 lab-based No Whole No [56] 99.50%

Butterflies species 9 25 lab-based Yes Whole No [25],[27] 90.30%

Miscellaneous

insects

species 20 12 lab-based Yes Whole No [44] 99%

Benthic

macro-

invertebrates

species 8 191 lab-based No Whole No [60] 88%

Palm tree in-

sects

species 21 20 lab-based Yes Whole No [46] 95%*

Cotton insects species 12 N/A multi-

individuals

No Whole No [29] 75%*

Rice insects species 4 195 multi-

individuals

No Whole No [30] 97.5%*

Stoneflies species 9 425 lab-based No Whole Yes (http:

//web.engr.

oregonstate.

edu/~tgd/bugid/

stonefly9/)

[59, 19,

57]

96.50%

Ephemeroptera,

Plecoptera

and Tri-

choptera

species 29 Yes (http:

//web.engr.

oregonstate.

edu/~tgd/bugid/

ept29/)

Spiders species 13 974 lab-based Yes Whole No [39] 100%

Lycosidae species 6 18 lab-based Yes Whole No [33] 100%

Several pests species 6 160 multi-

individuals

No Whole No [65] N/A

Field crop in-

sects

species 24 26 field-

based

No Whole No [27] 89.50%

Moths species N/A 6 field-

based

No Whole Yes (http:

//www2.ahu.edu.

cn/pchen/web/

insectRecognition.

htm)

[66] 88%

Several pests species N/A N/A field-

based

No Whole No [64] N/A

Wasps and

dragonflies

species 3 8 lab-based Yes Wings No [38] N/A

Honeybees subspecies 26 70 lab-based Yes Wings No [48] 65%

Bombus bees species 8 65 lab-based Yes Wings No [36] 95%

Various bees subspecies 5 448 lab-based Yes Wings No [40] 97.50%

Owlflies species 7 17 lab-based Yes Wings No [49] 100%

Fruitflies species 72 25 lab-based Yes Wings No [51] 86.20%

Mosquitoes species 79 100 lab-based Yes Wings No [51] 80.30%

Table 6: Datasets used in the selected studies
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